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Quantum size effects are successfully exploited in manipulating the growth of �111� oriented Pb islands on
Si�111� substrate with a scanning tunneling microscope. The growth dynamics and morphology displayed can
be well controlled through the quantum size effects defined by the island thicknesses and the interplay with the
classical forces. The transition of growth modes from quantum to classical regime and the quantum beating in
morphological dynamics are directly identified in real space and quantitatively analyzed. Atomic diffusion
barriers, an important parameter in the thin film growth process, are also demonstrated to be modified by
quantum size effects, and oscillate with a two-monolayer periodicity.
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When the sizes of materials are reduced to be comparable
to the Fermi wavelength, electrons’ energies are quantized
and sensitively size-dependent due to the quantum confine-
ment, which are collectively named quantum size effects
�QSEs�.1,2 QSEs are well known to play a crucial role in both
nanoscience and nanotechnology.3–9 QSEs can predominate
both the formation and stability of thin films in nanoscale.
On the other hand, free energy costs from steps provide the
usual “classical” driving force to smoothen the film’s sur-
face. In general, the classical step effect �CSE� predominates
the growth of thicker films,10–12 and QSE the thinner ones.
Okamoto et al. have observed the QSE-driven strip flow and
double layer growth inside a Pb ring-shaped structure, and
the stability of such a ring-shaped structure was qualitatively
ascribed to the competition between QSE and classical
effect.7 To date, the interplay between QSE and CSE has not
been quantitatively explored due to the difficulty in control-
ling both factors simultaneously, even though the QSE and
the CSE have been extensively studied separately.

For a Pb�111� island grown on a Si�111� substrate, elec-
trons confined in the potential well formed by the vacuum
barrier and the energy band gap of the substrate are quan-
tized into quantum well states �QWS�. Because the Fermi
wavelength of electrons in Pb is nearly four times the inter-
layer spacing in the �111� direction, the QWS energy, and
thus the Pb film stability,6–8 exhibit oscillations with periods
of �2 monolayers �ML�. However, for an ultrathin Pb�111�
island grown on a stepped Si�111� substrate, a smooth flat
surface �wedge shape� favored by CSE is unfavored by QSE
because it inevitably contains consecutive even �stable� and
odd �unstable� layers �see the schematic in Fig. 1�. Conse-
quently, QSE and CSE drive the system in opposite direc-
tions, as both are expected to contribute and to compete in
the growth process.

In this paper, a manipulation approach is employed to
trigger the growth of wedge-shaped Pb islands on stepped
Si�111� substrates using a scanning tunneling microscope
�STM�.10 The experiment reveals intriguing growth dynam-
ics and morphology due to the interplay between QSE and
CSE, which can be regulated by island thickness. It allows us
to characterize the transition from the quantum to the classi-

cal growth regime, to identify the stability transition caused
by quantum beating, and to deduce the critical surface energy
difference, �5 meV. From the growth kinetics, we further
show that the diffusion barriers on the Pb�111� surface oscil-
late with thickness in a periodicity of �2 ML, which is also
ascribed to electron quantization.

Our experiments were performed in a molecular beam
epitaxy system combined with an ultrahigh vacuum
��5�10−11 Torr� variable temperature STM. The Pb�111�
islands were grown by depositing high purity �99.999%� Pb
from a Knudsen cell on Si�111� substrates precleaned using
standard flashing procedures.13 During Pb deposition, the
Si�111� substrates were held at 145 K. The STM manipula-
tion was done by applying a voltage pulse of up to 10 V for
several milliseconds at a surface site of interest. Immediately
after the pulse, STM scanning was resumed to monitor the
morphological evolution, with a typical tunneling current of
�20 pA and a tip bias voltage of 1.5 V at variable tempera-
tures from �300 to �240 K.

The as-grown Pb islands normally have flat-top geom-
etries of low surface step energy but high quantized electron
energy, as schematically shown in Figs. 1�i� and 1�l�. The
quantized electron energy can be lowered by growing one
more atomic layer on top of the QSE-unfavored regions to
make them more stable �Figs. 1�j� and 1�k��. If these two
effects are quantitatively comparable, the system is frustrated
in terms of being unable to satisfy both QSE and CSE simul-
taneously. Remarkably, by applying an electric pulse using
an STM tip, the island can be transformed between the CSE-
favored flat-top and QSE-favored strip-top morphology in a
controllable manner.

The scenario is shown by sequential STM images in Fig.
1. Figure 1�a� shows the original flat-top wedge island. After
applying an electric pulse �+5 V to the STM tip�, a new Pb
layer forms spontaneously, starting from where the pulse was
applied. The nucleation of the new layer is an electric-field-
aided process and the Pb atoms supplying the growth come
from the neighboring Pb islands, which has been discussed
previously.7,10 Interestingly, the initial pulse-induced growth
is featured by a novel selective-strip flow defined by the
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substrate steps buried underneath �Figs. 1�b�–1�d��. The
selective-strip flow growth was first reported by Okamoto et
al.7 The atomic layer grows only on the odd layer-number
regions, leaving the original even layer-number regions un-
changed. This strip-flow growth continues until all regions
have even number of layers. The island by this point has
transformed to a new state with the lowest quantized electron
energy and the highest step energy �Figs. 1�d� and 1�j��. If no
additional pulse is applied, the island will recover its flat top
by atom incorporation at the steps, which minimizes the step
energy at the expense of the quantized electron energy �im-
age not shown�. In this way, each operation adds precisely
one complete atomic layer of Pb atoms on the wedge.

Such island evolution can also display more intricate dy-
namics. We can suppress the flat-top recovery process by
applying a second pulse just before it takes place, leading to
a different growth pathway. Surprisingly, the second pulse
triggers double-layer strip flow as shown in Figs. 1�e� and
1�f� and Fig. 1�k�. In this case, QSE dominates causing two
layers of atoms to grow simultaneously and the system al-
ways retains the lowest quantized electron energy. A similar
double layer growth was first observed by Okamoto et al.7

Again, when left alone, the growth will eventually proceed to
restore the flat-top configuration �Figs. 1�g� and 1�h�, and
Fig. 1�l��.

QSEs are known to decay with oscillations with increas-
ing film thickness.1,2 Figure 2�a� shows the growth mode
transition from the quantum to the classical regime taking
place at the critical thickness of 26 ML �the wetting layers
are included�. This novel growth behavior of selective strip-
flow followed by flat-top recovery �in the quantum regime�
can be repeated many times as long as the island’s thickness
is smaller than the critical thickness �see the island’s thinner
side in Fig. 2�a��. Above this critical value, the growth trans-
forms into conventional step-flow mode �the classical re-
gime�, wetting the island’s edge followed by vacancy island
decay, which is dominated by minimizing step energy �see
the island’s thicker side in Fig. 2�a��.10 Figure 2�b� shows
another interesting phenomenon in the regime of 17–18 ML:
for thicknesses smaller than 17 ML, selective strip-flow
growth takes place on even-layer-number regions and step
flow on the odd layer-number regions, whereas it is reversed
for thicknesses larger than 18 ML. At both 17 and 18 ML,
growth proceeds via step flow, which indicates that the QSE
in this regime is insufficient to overcome the CSE. The criti-
cal thickness of �26 ML for the quantum-classical transition
and the stability switching between even and odd numbers of
layers at 17–18 ML agrees quite well with the quantum beat-
ing pattern imposed on the envelope function of the surface
energy.14–16

To quantitatively analyze the critical transitions, we cal-
culate the total free energies for the reduced quantum and
classical growth modes shown in Figs. 2�c� and 2�d� as
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FIG. 1. �Color� A sequence of STM images �1000 nm
�1000 nm� recorded at room temperature showing the evolution of
a Pb island on Si�111�. �a� Original Pb island before STM manipu-
lation. The thickness of Pb layers on top of each Si terrace increases
successively from 4.5 to 7.3 nm, measured on top of the wetting
layer. The arrow marks the position where the voltage pulse
�+5 V� was applied to the STM tip. �b�–�d� Selective strip-flow
growth turning odd-layer-number regions into even numbers of lay-
ers. �e�–�f� Double-layer strip growth maintaining the even number
of layers. �g�–�h� Flat top recovery growth to reduce surface steps.
�i�–�l� Side-view schematics showing the original island, selective
strip-flow growth, double-layer strip growth, and flat-top-recovery
growth, respectively. Blue indicates the QSE-favored even-layer-
number regions, and red the QSE-unfavored-layer-number regions.
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E��� = 4
L2 − ��S + �EC. �2�

E��� in �1� and �2� are total energies for the cases of Figs.
2�c� and 2�d�, respectively, and � is the growing layer’s area
�coverage�. EC is the average surface energy in the classical
growth mode, and EQ is the quantum correction of the
surface energy due to QSE. �S is the free energy per unit
step length. The original Pb wedge is assumed to be a
square flat top with sides of length L covering n Si steps
�thus, the average terrace width is L /n�. We define
F�EQ ,n /L��EQ−2�S�n /L� as the effective difference of the
QSE energy and the CSE energy, to characterize the growth
behavior. F�EQ ,n /L�=0 indicates the transition from quan-

tum to classical growth. Quantitatively, the step energy of
Pb�111� has been calculated to be 78 meV/Å �Refs. 17 and
18�. Taking the average terrace width as �500 Å �Fig. 1�a��,
we estimate the critical surface energy difference between
two consecutive layers �one an odd number of layers thick
and the other an even number� to be �5 meV per unit cell,
which is in reasonable agreement with the value reported
recently,14,15 considering the simplification made in the
model and the sensitivity of electron confinement to interface
structures.19 Therefore, whether the triggered islands grow in
quantum or classical regime is determined by energetics:
quantum growth prefers on the thin films and classical
growth the thick films. In the quantum growth regime, one
may induce double-layer growth, short-cutting the flat-top
recovery process. Island growth is also strongly related to the
kinetic pathways: to initiate QSE-driven growth, a high
nucleation barrier needs to be overcome, which is realized
here with the help of STM manipulation.20–25 Since both the
QSE-mediated surface energy and the step energy are not
related to temperature, the thickness for the growth mode
transition and beating node do not change apparently with
temperature. However, to trigger the growth, enough thermal
energy is necessary to activate the diffusion of Pb atoms.

FIG. 2. �Color� �a� STM image �1000 nm�1000 nm� illustrat-
ing the quantum-classical growth transition, the white arrow
indicates the critical thickness of 26 ML. �b� STM image
�1300 nm�1300 nm� illustrating quantum beating in morphologi-
cal dynamics, the arrow indicates the critical thicknesses of 17 and
18 ML. The thickness increases from left to right for Pb islands in
both �a� and �b�. �c� and �d� Schematic diagrams illustrating the
quantum and classical growth mode, respectively. Red and blue
arrows in �c� indicate the growth directions of the selective strip and
the following flat-top recovery respectively, and black arrows in �d�
indicate the growth directions for classical growth.

FIG. 3. �Color� Time evolution of four stacked Pb layers created
by a voltage pulse of +7 V applied at t=0� to the STM tip. STM
scanning was performed at �240 K. The first, second, third, and
fourth layers are marked from bottom to up. Insets show the corre-
sponding STM images �300 nm�230 nm� of the growth fronts.
The thickness of the original Pb island increases from right to left.

FIG. 4. �Color� �a� Arrhenius plots for the se-
lective strip growth at 21 ML and flat-top-
recovery growth at 22 ML. �b� Line rate versus
thickness obtained at �300 K. �c� Relative effec-
tive diffusion barrier versus thickness.
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We further investigate the growth kinetics by triggering
multilayers with a +7 V pulse to the STM tip. Figure 3
shows the temporal evolution of the “step-crossing” growth
of four stacked layers at �240 K �Ref. 26�. The growth rate
of each layer is different and also changes in regions of dif-
ferent thickness. Once the growth fronts enter the QSE-
unfavored terraces, the growth rate becomes higher �the first
layer at 41 and 64 min in Fig. 3�. In contrast, the growth rate
is slowed down in the QSE-favored terraces �the first layer at
50 min, the third layer at 64 min, and the entire fourth layer�.
When the growth front of the third layer catches up with that
of the second layer on the QSE-unfavored terraces �at
60 min�, it turns into double-layer flow. Such intriguing os-
cillatory behavior in growth rates further confirms that selec-
tive strip growth is promoted by the QSE rather than the
elastic strain effect.

The growth area for selective strip growth and flat-top
recovery is found to be linearly dependent on time, resulting
in a constant growth rate. Deviations from linearity are found
only at the end of flat-top recovery growth when two oppo-
site fronts meet. This is because the growth rate is linearly
dependent of the length of growth front, which remains un-
changed for such substrate-step-confined growth. We assume
a linear rate �growth rate divided by the terrace width� on the

terrace of N ML RL�N�=v exp�−
Ed�N�

kBT exp�−
EQ�N�+��

kBT , where
	 is the hopping frequency that is supposed constant and
Ed�N� is the effective diffusion barrier. EQ�N� is the QWS-
mediated relative surface energy and ��C is the classical
part of chemical potential difference. The growth direction is
along the Si steps. Figure 4�a� shows the Arrhenius plots for
selective strip growth at 21 ML and flat-top-recovery growth
at 22 ML. Assuming the relative surface energy is
�20 meV,14 the effective diffusion barrier Ed�21� is deter-
mined to be �0.15 �±0.03� eV higher than Ed�22�, which

means that the diffusion barrier is also mediated by quan-
tized electrons.27 However, this value is simply too large,
implying that other kinetic factors such as the barrier for Pb
adatoms jumping from the sidewall to the top of the islands
and the additional Ehrlich-Schwoebel barrier, are also possi-
bly modified by QSEs to be thickness-dependent. Figure 4�b�
shows the linear rate RL of single layer on the terraces from
17 to 24 ML at �300 K. Evidently, growth rates at different
thicknesses oscillate with �2 ML periodicity. Figure 4�c�
shows the relative effective diffusion barriers for terraces
from 17 to 24 ML deduced from the growth rate oscillations.
The oscillatory behavior of the effective diffusion barrier is
consistent with the quantized electronic energy in Pb�111�
films.14 Therefore, the diffusion barrier is confirmed to be
modified by quantized electrons and oscillates with a period-
icity of 2 ML, which is responsible for the growth rate os-
cillations.

In conclusion, we have demonstrated Pb island growth
driven alternately by QSE and CSE in a controlled manner.
We showed that local kinetic pathways play an important
role in morphological evolution. A quantitative analysis was
also given for the transition from the quantum to the classical
growth regime and the reverse dynamics transition with in-
creasing film thickness. By investigating these kinetic pro-
cesses, we conclude that the diffusion barriers are also me-
diated by quantized electrons and display 2 ML periodic
oscillations. This work provides a potential approach to tailor
nanostructures precisely via manipulation of quantum size
effects.
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